Inefficient skeletal muscle repair in inhibitor of differentiation knockout mice suggests a crucial role for BMP signaling during adult muscle regeneration.
نویسندگان
چکیده
The bone morphogenetic protein (BMP) pathway is known to be involved in limb myogenesis during development, but whether it is involved in postnatal muscle regeneration is unclear. We have found that adult inhibitor of differentiation (Id)-mutant (Id1(+/-)Id3(-/-)) mice display delayed and reduced skeletal muscle regeneration after injury compared with either wild-type littermates or Id3-null mice. Immunoblotting of wild-type muscle lysates revealed that, not only were Id1 and Id3 highly upregulated within 24 h after injury, but other upstream components of the BMP pathway were as well, including the BMP receptor type II and phosphorylated Smad1/5/8 (pSmad1/5/8). Inhibition of BMP signaling in injured skeletal muscle by Noggin injection reduced pSmad1/5/8, Id1, and Id3 protein levels. The mouse myoblast-derived cell line C2C12 also expressed Id1, Id3, BMP receptor type II, and pSmad1/5/8 during proliferation, but all were reduced upon differentiation into myotubes. In addition, these cells secreted mature BMP-4, and BMP signaling could be inhibited with exogenous Noggin, causing a reduction in pSmad1/5/8, Id1, and Id3 levels. Confocal immunofluorescence microscopy revealed that activated Pax7(+) myoblasts coexpressed nuclear pSmad1/5/8, Id1, and Id3 in injured mouse skeletal muscle sections. Although we did not observe differences in the numbers of quiescent Pax7(+) satellite cells in adult uninjured hindlimb muscles, we did observe a significant reduction in the number of proliferating Pax7(+) cells in the Id-mutant mice after muscle injury compared with either wild-type or Id3-null mice. These data suggest a model in which BMP signaling regulates Id1 and Id3 in muscle satellite cells, which directs their proper proliferation before terminal myogenic differentiation after skeletal muscle injury in postnatal animals.
منابع مشابه
The role of the desert hedgehog signaling pathway during degeneration and regeneration of peripheral nerves
The desert hedgehog (Dhh) signaling pathway is involved in the development of peripheral nerves (PNs). Dhh-null mice show abnormal neuronal development and perineurial barrier function. As it was previously shown that dhh is mainly expressed in developmental nerves and Sonic hedgehog protein (dhh homologous) has therapeutic effects in neuronal survival, we attempted to investigate the possible ...
متن کاملThe role of the desert hedgehog signaling pathway during degeneration and regeneration of peripheral nerves
The desert hedgehog (Dhh) signaling pathway is involved in the development of peripheral nerves (PNs). Dhh-null mice show abnormal neuronal development and perineurial barrier function. As it was previously shown that dhh is mainly expressed in developmental nerves and Sonic hedgehog protein (dhh homologous) has therapeutic effects in neuronal survival, we attempted to investigate the possible ...
متن کاملTrbp Is Required for Differentiation of Myoblasts and Normal Regeneration of Skeletal Muscle
Global inactivation of Trbp, a regulator of miRNA pathways, resulted in developmental defects and postnatal lethality in mice. Recently, we showed that cardiac-specific deletion of Trbp caused heart failure. However, its functional role(s) in skeletal muscle has not been characterized. Using a conditional knockout model, we generated mice lacking Trbp in the skeletal muscle. Unexpectedly, skele...
متن کاملMuscle regeneration and myogenic differentiation defects in mice lacking TIS7.
The tetradecanoyl phorbol acetate-induced sequence 7 gene (tis7) is regulated during cell fate processes and functions as a transcriptional coregulator. Here, we describe the generation and analysis of mice lacking the tis7 gene. Surprisingly, TIS7 knockout mice show no gross histological abnormalities and are fertile. Disruption of the tis7 gene by homologous recombination delayed muscle regen...
متن کاملThe role of p53 in vivo during skeletal muscle post-natal development and regeneration: studies in p53 knockout mice.
The tumour suppressor gene p53 is recognised as a central regulator of the cell cycle and apoptosis. Post-natally, p53 mutations are associated with many cancers and mice lacking p53 are prone to spontaneous tumour formation. The present study examines skeletal muscle formation in post-natal mice lacking p53 using two different models of skeletal muscle regeneration. The level of endogenous myo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 298 5 شماره
صفحات -
تاریخ انتشار 2010